Cooperative Copper Single‐Atom Catalyst in 2D Carbon Nitride for Enhanced CO2 Electrolysis to Methane

Author:

Roy Soumyabrata1ORCID,Li Zhengyuan2,Chen Zhiwen3,Mata Astrid Campos1,Kumar Pawan4,Sarma Saurav Ch.5,Teixeira Ivo F67ORCID,Silva Ingrid F7,Gao Guanhui1,Tarakina Nadezda V.7,Kibria Md Golam4,Singh Chandra Veer3,Wu Jingjie2,Ajayan Pulickel M.1ORCID

Affiliation:

1. Department of Materials Science and Nano Engineering Rice University Houston Texas 77005 USA

2. Department of Chemical and Environmental Engineering University of Cincinnati Cincinnati OH 45221 USA

3. Department of Material Science and Engineering University of Toronto Ontario M5S 1A1 Canada

4. Department of Chemical and Petroleum Engineering University of Calgary 2500 University Drive, NW Calgary Alberta T2N 1N4 Canada

5. Department of Chemical Engineering Imperial College London London England SW7 2AZ UK

6. Department of Chemistry Federal University of São Carlos São Carlos SP 13565–905 Brazil

7. Department of Colloid Chemistry Max‐Planck Institute of Colloids and Interfaces Am Mühlenberg 1, D‐ 14476 Potsdam Germany

Abstract

AbstractRenewable‐electricity‐powered carbon dioxide (CO2) reduction (eCO2R) to high‐value fuels like methane (CH4) holds the potential to close the carbon cycle at meaningful scales. However, this kinetically staggered 8‐electron multistep reduction suffers from inadequate catalytic efficiency and current density. Atomic Cu‐structures can boost eCO2R‐to‐CH4 selectivity due to enhanced intermediate binding energies (BEs) resulting from favorably shifted d‐band centers. In this work, 2D carbon nitride (CN) matrices, viz. Na‐polyheptazine (PHI) and Li‐polytriazine imides (PTI), are exploited to host Cu–N2 type single‐atom sites with high density (≈1.5 at%), via a facile metal‐ion exchange process. Optimized Cu loading in nanocrystalline Cu‐PTI maximizes eCO2R‐to‐CH4 performance with Faradaic efficiency (FECH4) of ≈68% and a high partial current density of 348 mA cm−2 at −0.84 V vs reversible hydrogen electrode (RHE), surpassing the state‐of‐the‐art catalysts. Multi‐Cu substituted N‐appended nanopores in the CN frameworks yield thermodynamically stable quasi‐dual/triple sites with large interatomic distances dictated by the pore dimensions. First‐principles calculations elucidate the relative Cu–CN cooperative effects between the matrices and how the Cu local environment dictates the adsorbate BEs, density of states, and CO2‐to‐CH4 energy profile landscape. The 9N pores in Cu‐PTI yield cooperative Cu–Cu sites that synergistically enhance the kinetics of the rate‐limiting steps in the eCO2R‐to‐CH4 pathway.

Funder

Alexander von Humboldt-Stiftung

Max-Planck-Gesellschaft

Canadian Light Source

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3