Advanced carbon nitride‐based single‐atom photocatalysts

Author:

Zhang Zifan1,Xiang Kun1,Wang Haitao1ORCID,Li Xin2,Zou Jing1,Liang Guijie3,Jiang Jizhou1ORCID

Affiliation:

1. School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center Wuhan Institute of Technology Wuhan China

2. Institute of Biomass Engineering Key Laboratory of Energy Plants Resource and Utilization Ministry of Agriculture and Rural Affairs South China Agricultural University Guangzhou China

3. Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices Hubei University of Arts and Science Xiangyang China

Abstract

AbstractSingle‐atom catalysts (SACs) have rapidly become a hot topic in photocatalytic research due to their unique physical and chemical properties, high activity, and high selectivity. Among many semiconductor carriers, the special structure of carbon nitride (C3N4) perfectly meets the substrate requirements for stabilizing SACs; they can also compensate for the photocatalytic defects of C3N4 materials by modifying energy bands and electronic structures. Therefore, developing advanced C3N4‐based SACs is of great significance. In this review, we focus on elucidating efficient preparation strategies and the burgeoning photocatalytic applications of C3N4‐based SACs. We also outline prospective strategies for enhancing the performance of SACs and C3N4‐based SACs in the future. A comprehensive array of methodologies is presented for identifying and characterizing C3N4‐based SACs. This includes an exploration of potential atomic catalytic mechanisms through the simulation and regulation of atomic catalytic behaviors and the synergistic effects of single or multiple sites. Subsequently, a forward‐looking perspective is adopted to contemplate the future prospects and challenges associated with C3N4‐based SACs. This encompasses considerations, such as atomic loading, regulatory design, and the integration of machine learning techniques. It is anticipated that this review will stimulate novel insights into the synthesis of high‐load and durable SACs, thereby providing theoretical groundwork for scalable and controllable applications in the field.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3