Sub‐Nanosecond Reconfiguration of Ferroelectric Domains in Bismuth Ferrite

Author:

Guzelturk Burak1ORCID,Yang Tiannan23,Liu Yu‐Chen45,Wei Chia‐Chun45,Orenstein Gal6,Trigo Mariano6,Zhou Tao7,Diroll Benjamin T.7,Holt Martin V.7,Wen Haidan18,Chen Long‐Qing2,Yang Jan‐Chi45,Lindenberg Aaron M.6910

Affiliation:

1. X‐ray Science Division Argonne National Laboratory Lemont IL 60439 USA

2. Materials Research Institute The Pennsylvania State University University Park PA 16801 USA

3. School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China

4. Department of Physics National Cheng Kung University Tainan 70101 Taiwan

5. Center for Quantum Frontiers of Research & Technology (QFort) National Cheng Kung University Tainan 70101 Taiwan

6. Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Menlo Park CA 94025 USA

7. Nanoscience Science and Technology Division Argonne National Laboratory Lemont IL 60439 USA

8. Materials Science Division Argonne National Laboratory Lemont IL 60439 USA

9. Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA

10. Department of Photon Science Stanford University and SLAC National Accelerator Laboratory Menlo Park CA 94025 USA

Abstract

AbstractDomain switching is crucial for achieving desired functions in ferroic materials that are used in various applications. Fast control of domains at sub‐nanosecond timescales remains a challenge despite its potential for high‐speed operation in random‐access memories, photonic, and nanoelectronic devices. Here, ultrafast laser excitation is shown to transiently melt and reconfigure ferroelectric stripe domains in multiferroic bismuth ferrite on a timescale faster than 100 picoseconds. This dynamic behavior is visualized by picosecond‐ and nanometer‐resolved X‐ray diffraction and time‐resolved X‐ray diffuse scattering. The disordering of stripe domains is attributed to the screening of depolarization fields by photogenerated carriers resulting in the formation of charged domain walls, as supported by phase‐field simulations. Furthermore, the recovery of disordered domains exhibits subdiffusive growth on nanosecond timescales, with a non‐equilibrium domain velocity reaching up to 10 m s−1. These findings present a new approach to image and manipulate ferroelectric domains on sub‐nanosecond timescales, which can be further extended into other complex photoferroic systems to modulate their electronic, optical, and magnetic properties beyond gigahertz frequencies. This approach could pave the way for high‐speed ferroelectric data storage and computing, and, more broadly, defines new approaches for visualizing the non‐equilibrium dynamics of heterogeneous and disordered materials.

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

National Science and Technology Council

Division of Materials Sciences and Engineering

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3