Zero‐Biased Bionic Fingertip E‐Skin with Multimodal Tactile Perception and Artificial Intelligence for Augmented Touch Awareness

Author:

Guo Xinge123,Sun Zhongda124,Zhu Yao3,Lee Chengkuo1245ORCID

Affiliation:

1. Department of Electrical & Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore

2. Center for Intelligent Sensors and MEMS (CISM) National University of Singapore 5 Engineering Drive 1 Singapore 117608 Singapore

3. Institute of Microelectronics (IME) Agency for Science Technology, and Research (A*STAR) Singapore 138634 Singapore

4. National University of Singapore Suzhou Research Institute (NUSRI) Suzhou 215123 China

5. NUS Graduate School – Integrative Sciences and Engineering Program (ISEP) National University of Singapore Singapore 119077 Singapore

Abstract

AbstractElectronic skins (E‐Skins) are crucial for future robotics and wearable devices to interact with and perceive the real world. Prior research faces challenges in achieving comprehensive tactile perception and versatile functionality while keeping system simplicity for lack of multimodal sensing capability in a single sensor. Two kinds of tactile sensors, transient voltage artificial neuron (TVAN) and sustained potential artificial neuron (SPAN), featuring self‐generated zero‐biased signals are developed to realize synergistic sensing of multimodal information (vibration, material, texture, pressure, and temperature) in a single device instead of complex sensor arrays. Simultaneously, machine learning with feature fusion is applied to fully decode their output information and compensate for the inevitable instability of applied force, speed, etc, in real applications. Integrating TVAN and SPAN, the formed E‐Skin achieves holistic touch awareness in only a single unit. It can thoroughly perceive an object through a simple touch without strictly controlled testing conditions, realize the capability to discern surface roughness from 0.8 to 1600 µm, hardness from 6HA to 85HD, and correctly distinguish 16 objects with temperature variance from 0 to 80 °C. The E‐skin also features a simple and scalable fabrication process, which can be integrated into various devices for broad applications.

Funder

National Research Foundation Singapore

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3