Affiliation:
1. State Key Laboratory of Optoelectronic Materials and Technologies Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices Nanotechnology Research Center School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P.R. China
Abstract
AbstractThe positive photoconductive (PPC) effect is a well‐established primary detection mechanism employed by photodetectors. In contrast, the negative photoconductive (NPC) effect is not extensively investigated thus far, and research on the NPC effect is still in its early stage. Herein, a quaternary van der Waals material, AgBiP2Se6 atomic layers, is discovered to achieve a giant NPC effect. Through experimental observations in a Graphene/AgBiP2Se6/ Graphene‐based vertical photodetector, an irreversible conversion is identified from common PPC photoresponse to atypical NPC photoresponse. Notably, this device demonstrates an exceptionally high negative responsivity (R) of 4.9 × 105 A W−1, surpassing the previous records for NPC photodetectors. Additionally, it exhibits remarkable optoelectronic performances, including an external quantum efficiency of 1.3 × 108% and a detectivity (D) of 3.60 × 1012 Jones. The exceptionally high NPC photoresponse observed in this device can be attributed to the swift suppression of photogenerated free carriers at robust recombination centers situated at significant depths, induced by the elevated drain‐source voltage bias. The remarkably high NPC photoresponse also positions AgBiP2Se6 as a promising 2D material for multifunctional optoelectronic devices and an excellent platform for systematic exploration of the NPC effect.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献