Multi‐Factor Modulated Organic Bulk Heterojunction Synaptic Transistor Enabled by Ligand Engineering for Centrosymmetric In‐Sensor Computing

Author:

Li Enlong123,Wang Xiumei234,Yu Xipeng2,Yu Rengjian2,Li Wenwu1ORCID,Guo Tailiang23,Chu Junhao1,Chen Huipeng23

Affiliation:

1. Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Institute of Optoelectronics Department of Materials Science Fudan University Shanghai 200433 China

2. Institute of Optoelectronic Display National & Local United Engineering Lab of Flat Panel Display Technology Fuzhou University Fuzhou 350002 China

3. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350100 China

4. School of Engineering Anhui Agricultural University Hefei Anhui 230036 China

Abstract

AbstractEfficient in‐sensor computing necessitates linear, bidirectional, and centrosymmetric photoresponse weight updates; however, the realization of these attributes poses a persistent challenge, with most photosensor devices achieving linear analog weight updates while falling short of accomplishing bidirectional and centrosymmetric characteristics. Here, the development of a quantum dot (QD)–based bulk heterojunction synaptic transistor (QBST) with multi‐factor modulation through surface ligand engineering of blend QDs is reported. By controlling the charge transmission between QDs and the semiconductor, the QBST device enables tunable fading memory, which transforms linear weight updates in short‐chain devices into linear, bidirectional, and unprecedented centrosymmetric optical synaptic responses in long‐chain devices. Moreover, through the synergy of chemical and electric factors, the convolutional kernel of QBSTs‐based convolutional neural network realizes enhanced recognition for complex noisy fashion‐costume images, achieving an impressive 90.3% accuracy in the long‐chain device, highlighting the efficiency of centrosymmetric weight updates. The results demonstrate that surface ligand engineering offers a promising approach for customizable synaptic modulation, facilitating energy‐ and time‐efficient in‐sensor computing.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3