Tuning the Spin Transition and Carrier Type in Rare‐Earth Cobaltates via Compositional Complexity

Author:

Zhang Alan1,Oh Sangheon1,Choi Byoung Ki23,Rotenberg Eli3,Brown Timothy D.1,Spataru Catalin D.1,Kinigstein Eli3,Guo Jinghua3,Sugar Joshua D.1,Salagre Elena1,Mascaraque Arantzazu4,Michel Enrique G.56,Shad Alison C.1,Zhu Jacklyn1,Witman Matthew D.1,Kumar Suhas1,Talin A. Alec1,Fuller Elliot J.1ORCID

Affiliation:

1. Sandia National Laboratories 7011 East Ave. Livermore CA 94550 USA

2. Department of Electrical and Computer Engineering Texas A&M University College Station TX 3127 USA

3. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

4. Departamento de Física de Materiales Universidad Complutense de Madrid Madrid 28040 Spain

5. Departamento de Física de la Materia Condensada and Instituto Universitario de Ciencia de Materiales Nicolás Cabrera (INC) Universidad Autónoma de Madrid Madrid 28049 Spain

6. IFIMAC (Condensed Matter Physics Center) Universidad Autónoma de Madrid Madrid 28049 Spain

Abstract

AbstractThere is growing interest in material candidates with properties that can be engineered beyond traditional design limits. Compositionally complex oxides (CCO), often called high entropy oxides, are excellent candidates, wherein a lattice site shares more than four cations, forming single‐phase solid solutions with unique properties. However, the nature of compositional complexity in dictating properties remains unclear, with characteristics that are difficult to calculate from first principles. Here, compositional complexity is demonstrated as a tunable parameter in a spin‐transition oxide semiconductor La1− x(Nd, Sm, Gd, Y)x/4CoO3, by varying the population x of rare earth cations over 0.00≤ x≤ 0.80. Across the series, increasing complexity is revealed to systematically improve crystallinity, increase the amount of electron versus hole carriers, and tune the spin transition temperature and on‐off ratio. At high a population (x = 0.8), Seebeck measurements indicate a crossover from hole‐majority to electron‐majority conduction without the introduction of conventional electron donors, and tunable complexity is proposed as new method to dope semiconductors. First principles calculations combined with angle resolved photoemission reveal an unconventional doping mechanism of lattice distortions leading to asymmetric hole localization over electrons. Thus, tunable complexity is demonstrated as a facile knob to improve crystallinity, tune electronic transitions, and to dope semiconductors beyond traditional means.

Funder

U.S. Department of Energy

Advanced Light Source

Energy Frontier Research Centers

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3