Intrinsic Dipole Arrangement to Coordinate Energy Levels for Efficient and Stable Perovskite Solar Cells

Author:

Wu Yutong1,Chang Bohong1,Wang Lian1,Li Hui1,Pan Lu1,Liu Zhen1,Yin Longwei1ORCID

Affiliation:

1. Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials Ministry of Education School of Materials Science and Engineering Shandong University Jinan 250061 P. R. China

Abstract

AbstractDespite great progress in perovskite photovoltaics, it should be noted that the intrinsic disorder dipolar cations in organic–inorganic hybrid perovskites exert negative effects on the energy band structure as well as the carrier separation and transfer dynamics. However, oriented polarization achieved by applying an external electric field may cause irreversible damage to perovskites. Herein, a unique and efficient strategy is developed to modulate the intrinsic dipole arrangement in perovskite films for high‐performance and stable perovskite solar cells (PSCs). The spontaneous reorientation of dipolar cation methylamine is triggered by a polar molecule, constructing a vertical polarization during crystallization regulation. The oriented dipole determines a gradient energy‐level arrangement in PSCs and more favorable energetics at interfaces, effectively enhancing the built‐in electric field and suppressing the nonradiative recombination. Besides, the dipole reorientation induces a local dielectric environment to remarkably reduce exciton binding energy, leading to an ultralong carrier diffusion length of up to 1708 nm. Accordingly, the n–i–p PSCs achieve a significant increase in power conversion efficiency, reaching 24.63% with negligible hysteresis and exhibiting outstanding stabilities. This strategy also provides a facile route to eliminate the mismatched energetics and enhance carrier dynamics for other novel photovoltaic devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3