Affiliation:
1. Max‐Planck Institute for Solid‐State Research DE‐70569 Stuttgart Germany
2. Institut de Physique École Polytechnique Fédérale de Lausanne Lausanne CH‐1015 Switzerland
Abstract
AbstractControl of nanomaterial dimensions with atomic precision through synthetic methods is essential to understanding and engineering of nanomaterials. For single‐layer inorganic materials, size and shape controls have been achieved by self‐assembly and surface‐catalyzed reactions of building blocks deposited at a surface. However, the scope of nanostructures accessible by such approach is restricted by the limited choice of building blocks that can be thermally evaporated onto surfaces, such as atoms or thermostable molecules. Herein this limitation is bypassed by using mass‐selected molecular ions obtained via electrospray ionization as building blocks to synthesize nanostructures that are inaccessible by conventional evaporation methods. As the first example, micron‐scale production of MoS2 and WS2 nanoribbons and their heterostructures on graphene are shown by the self‐assembly of asymmetrically shaped building blocks obtained from the electrospray. It is expected that judicious use of electrospray‐generated building blocks would unlock access to previously inaccessible inorganic nanostructures.
Funder
H2020 European Research Council
Alexander von Humboldt-Stiftung
H2020 Research Infrastructures
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献