Boosting the Photoluminescence Efficiency of InAs Nanocrystals Synthesized with Aminoarsine via a ZnSe Thick‐Shell Overgrowth

Author:

Zhu Dongxu1ORCID,Bahmani Jalali Houman12ORCID,Saleh Gabriele1,Di Stasio Francesco2,Prato Mirko3,Polykarpou Nefeli4,Othonos Andreas5,Christodoulou Sotirios4,Ivanov Yurii P.6ORCID,Divitini Giorgio6,Infante Ivan78,De Trizio Luca9,Manna Liberato1ORCID

Affiliation:

1. Nanochemistry Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy

2. Photonic Nanomaterials Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy

3. Materials Characterization Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy

4. Inorganic Nanocrystals Laboratory Department of Chemistry University of Cyprus Nicosia 1678 Cyprus

5. Laboratory of Ultrafast Science Department of Physics University of Cyprus Nicosia 1678 Cyprus

6. Electron Spectroscopy and Nanoscopy Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy

7. BCMaterials Basque Center for Materials, Applications, and Nanostructures UPV/EHU Science Park Leioa 48940 Spain

8. Ikerbasque Basque Foundation for Science Bilbao 48009 Spain

9. Chemistry Facility Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy

Abstract

AbstractInAs‐based nanocrystals can enable restriction of hazardous substances (RoHS) compliant optoelectronic devices, but their photoluminescence efficiency needs improvement. We report an optimized synthesis of InAs@ZnSe core@shell nanocrystals allowing to tune the ZnSe shell thickness up to seven mono‐layers (ML) and to boost the emission, reaching a quantum yield of ≈70% at ≈900 nm. It is demonstrated that a high quantum yield can be attained when the shell thickness is at least ≈3ML. Notably, the photoluminescence lifetimeshows only a minor variation as a function of shell thickness, whereas the Auger recombination time (a limiting aspect in technological applications when fast) slows down from 11 to 38 ps when increasing the shell thickness from 1.5 to 7MLs. Chemical and structural analyses evidence that InAs@ZnSe nanocrystals do not exhibit any strain at the core‐shell interface, likely due to the formation of an InZnSe interlayer. This is supported by atomistic modeling, which indicates the interlayer as being composed of In, Zn, Se and cation vacancies, alike to the In2ZnSe4 crystal structure. The simulations reveal an electronic structure consistent with that of type‐I heterostructures, in which localized trap states can be passivated by a thick shell (>3ML) and excitons are confined in the core.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3