Dicarboxylic Acid‐Assisted Surface Oxide Removal and Passivation of Indium Antimonide Colloidal Quantum Dots for Short‐Wave Infrared Photodetectors

Author:

Zhang Yangning1ORCID,Xia Pan1ORCID,Rehl Benjamin1,Parmar Darshan H.1ORCID,Choi Dongsun1,Imran Muhammad1,Chen Yiqing1,Liu Yanjiang1,Vafaie Maral1,Li Chongwen1,Atan Ozan1,Pina Joao M.1,Paritmongkol Watcharaphol12,Levina Larissa1,Voznyy Oleksandr3,Hoogland Sjoerd1,Sargent Edward H.1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering University of Toronto 10 King's College Road M5S 3G4 Toronto Ontario Canada

2. Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology 21210 Rayong Thailand

3. Department of Physical and Environmental Sciences University of Toronto (Scarborough) 1065 Military Trail M1C 1A4 Toronto Ontario Canada

Abstract

AbstractHeavy‐metal‐free III–V colloidal quantum dots (CQDs) are promising materials for solution‐processed short‐wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum‐size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large‐diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to 1400 nm light. Here we adopt solvent engineering to facilitate a diffusion‐limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate‐halide co‐passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III–V CQD photodetectors in this spectral region.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3