Affiliation:
1. Department of Electrical and Computer Engineering University of Toronto 10 King's College Road M5S 3G4 Toronto Ontario Canada
2. Department of Materials Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology 21210 Rayong Thailand
3. Department of Physical and Environmental Sciences University of Toronto (Scarborough) 1065 Military Trail M1C 1A4 Toronto Ontario Canada
Abstract
AbstractHeavy‐metal‐free III–V colloidal quantum dots (CQDs) are promising materials for solution‐processed short‐wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum‐size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large‐diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to
1400 nm light. Here we adopt solvent engineering to facilitate a diffusion‐limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate‐halide co‐passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III–V CQD photodetectors in this spectral region.
Funder
Natural Sciences and Engineering Research Council of Canada
Canada Research Chairs
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献