Affiliation:
1. Institute of Low‐Dimensional Materials Genome Initiative College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 China
2. Department of Mechanical Engineering The Hong Kong Polytechnic University Hong Kong 100872 China
Abstract
AbstractSolid‐state lithium‐metal batteries constructed by in‐situ solidification of cyclic ether are considered to be a critical strategy for the next generation of solid‐state batteries with high energy density and safety. However, the poor thermal/electrochemical stability of linear polyethers and severe interfacial reactions limit its further development. Herein, in‐situ ring‐opening hybrid crosslinked polymerization is proposed for organic/inorganic hybrid polymer electrolyte (HCPE) with superior ionic conductivity of 2.22 × 10−3 S cm−1 at 30 °C, ultrahigh Li+ transference number of 0.88, and wide electrochemical stability window of 5.2 V. These allow highly stable lithium stripping/plating cycling for over 1000 h at 1 mA cm−2, which also reveal a well‐defined interfacial stabilization mechanism. Thus, HCPE endows assembled solid‐state lithium‐metal batteries with excellent long‐cycle performance over 600 cycles at 2 C (25 °C) and superior capacity retention of 92.1%. More importantly, the proposed noncombustible HCPE opens up a new frontier to promote the practical application of high safety and high energy density solid‐state batteries via in‐situ solidification.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献