Multi‐Resonant Mie Resonator Arrays for Broadband Light Trapping in Ultrathin c‐Si Solar Cells

Author:

Lee Nayeun1,Xue Muyu1,Hong Jiho1,van de Groep Jorik12ORCID,Brongersma Mark Luitzen1ORCID

Affiliation:

1. Geballe Laboratory for Advanced Materials Stanford University Stanford CA 94305 USA

2. Van der Waals–Zeeman Institute Institute of Physics University of Amsterdam Amsterdam 1098 XH the Netherlands

Abstract

AbstractEffective photon management is critical to realize high power conversion efficiencies for thin crystalline silicon (c‐Si) solar cells. Standard few‐100‐µm‐thick bulk cells achieve light trapping with macroscopic surface textures covered by thin, continuous antireflection coatings. Such sizeable textures are challenging to implement on ultrathin cells. Here, it is illustrated how nanoscale Mie‐resonator‐arrays with a bimodal size distribution support multiple resonances that can work in concert to achieve simultaneous antireflection and light‐trapping across the broad solar spectrum. The effectiveness of these light‐trapping antireflection coatings is experimentally demonstrated on a 2.8 µm‐thick c‐Si solar cell. The measured short‐circuit current and corresponding power conversion efficiency are notably improved, achieving efficiencies as high as 11.2%. Measurements of the saturation current density on completed cells indicate that thermal oxides can effectively limit surface recombination. The presented design principles are applicable to a wide range of solar cells.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference35 articles.

1. IEA “Renewable power generation by technology in the Sustainable Development Scenario 2000–2030 IEA Paris” https://www.iea.org/data-and-statistics/charts/renewable-power-generation-by-technology-in-the-sustainable-development-scenario-2000-2030(accessed: June 2021).

2. Q4 2019/Q1 2020 Solar Industry Update

3. Increasing markets and decreasing package weight for high-specific-power photovoltaics

4. Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3