Broadband nonreciprocal gyromagnetic metasurface via magnetic Kerker-type dimers

Author:

Zhang Yujie1ORCID,Jing Liqiao2ORCID,Niu Chuanning1ORCID,Zhao Jia1ORCID,Wang Zuojia23ORCID

Affiliation:

1. School of Information Science and Engineering, Shandong University 1 , Qingdao 266237, China

2. Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University 2 , Hangzhou 310027, China

3. International Joint Innovation Center, Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy at Zhejiang University, Zhejiang University 3 , Haining 314400, China

Abstract

Optical nonreciprocity, stemming from the deviation of the Lorentz reciprocity theorem, holds significant interest in the realm of optics and electromagnetics. Here, we propose and experimentally demonstrate broadband nonreciprocal transmission via a low-biased magnetic Kerker-type dimer metasurface. The designed magneto-optical metasurface comprises three layers of metal sandwiched between two gyromagnetic near-zero thickness slabs. The Kerker-type dimers broaden the isolation bandwidth utilizing multiple resonances where the double-stacked metallic disks act as Kerker-type dipoles, enhancing the transmissibility of the metasurface. The multipole decomposition reveals that the magnetic dipole contribution arising from magnetization is the primary cause of the metasurface's nonreciprocal response. Microwave measurement demonstrates that the bandwidth for an isolation ratio exceeding 10 dB is over 3 GHz. The broadband nonreciprocal performance remains relatively stable, exhibiting strong robustness against the bias disturbance. Our findings provide an alternative avenue for enhancing broadband nonreciprocity transmission under a low-biased magnetic field.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Natural Science Foundation of Zhejiang Province

Natural Science Foundation of Shandong Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3