Affiliation:
1. State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
2. Nano‐Technology Research Laboratory Department of Chemistry GLA University Mathura Uttar Pradesh 281406 India
3. School of Environment and Civil Engineering Dongguan University of Technology Dongguan Guangdong 523808 China
4. Xi'an Key Laboratory of New Energy Materials and Devices Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering Xi'an University of Technology Xi'an Shanxi 710048 China
Abstract
AbstractPursuing high power density with low platinum catalysts loading is a huge challenge for developing high‐performance fuel cells (FCs). Herein, a new super fuel cell (SFC) is proposed with ultrahigh output power via specific electric double‐layer capacitance (EDLC) + oxygen reduction reaction (ORR) parallel discharge, which is achieved using the newly prepared catalyst, single‐atomic platinum on bimetallic metal‐organic framework (MOF)‐derived hollow porous carbon nanorods (PtSA/HPCNR). The PtSA‐1.74/HPCNR‐based SFC has a 3.4‐time higher transient specific power density and 13.3‐time longer discharge time with unique in situ self‐charge and energy storage ability than 20% Pt/C‐based FCs. X‐ray absorption fine structure, aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscope, and density functional theory calculations demonstrate that the synergistic effect of Pt single‐atoms anchored on carbon defects significantly boosts its electron transfer, ORR catalytic activity, durability, and rate performance, realizing rapid “ ORR+EDLC” parallel discharge mechanism to overcome the sluggish ORR process of traditional FCs. The promising SFC leads to a new pathway to boost the power density of FCs with extra‐low Pt loading.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献