Highly Conductive and Stretchable Hydrogel Nanocomposite Using Whiskered Gold Nanosheets for Soft Bioelectronics

Author:

Lim Chaehong12,Lee Seunghwan12ORCID,Kang Hyejeong1,Cho Ye Seul3,Yeom Da‐Hae3,Sunwoo Sung‐Hyuk14,Park Chansul12,Nam Seonghyeon12,Kim Jeong Hyun1,Lee Seung‐Pyo135ORCID,Kim Dae‐Hyeong12ORCID,Hyeon Taeghwan12ORCID

Affiliation:

1. Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea

2. School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea

3. Division of Cardiology Department of Internal Medicine Seoul National University Hospital Seoul 03080 Republic of Korea

4. Department of Chemical Engineering Kumoh National Institute of Technology Gumi 39177 Republic of Korea

5. Department of Internal Medicine Seoul National University College of Medicine Seoul 03080 Republic of Korea

Abstract

AbstractThe low electrical conductivity of conductive hydrogels limits their applications as soft conductors in bioelectronics. This low conductivity originates from the high water content of hydrogels, which impedes facile carrier transport between conductive fillers. This study presents a highly conductive and stretchable hydrogel nanocomposite comprising whiskered gold nanosheets. A dry network of whiskered gold nanosheets is fabricated and then incorporated into the wet hydrogel matrices. The whiskered gold nanosheets preserve their tight interconnection in hydrogels despite the high water content, providing a high‐quality percolation network even under stretched states. Regardless of the type of hydrogel matrix, the gold‐hydrogel nanocomposites exhibit a conductivity of ≈520 S cm−1 and a stretchability of ≈300% without requiring a dehydration process. The conductivity reaches a maximum of ≈3304 S cm−1 when the density of the dry gold network is controlled. A gold‐adhesive hydrogel nanocomposite, which can achieve conformal adhesion to moving organ surfaces, is fabricated for bioelectronics demonstrations. The adhesive hydrogel electrode outperforms elastomer‐based electrodes in in vivo epicardial electrogram recording, epicardial pacing, and sciatic nerve stimulation.

Funder

Institute for Basic Science

Naver Corporation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3