Affiliation:
1. College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University 999 Xuefu Avenue Nanchang 330031 China
2. Peking University Yangtze Delta Institute of Optoelectronics Nantong 226010 China
3. National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
4. College of Chemistry and Chemical Engineering Gannan Normal University Ganzhou 341000 China
Abstract
AbstractIn recent years, organic‐inorganic halide perovskites are now emerging as the most attractive alternatives for next‐generation photovoltaic devices, due to their excellent optoelectronic characteristics and low manufacturing cost. However, the resultant perovskite solar cells (PVSCs) are intrinsically unstable owing to ion migration, which severely impedes performance enhancement, even with device encapsulation. There is no doubt that the investigation of ion migration and the summarization of recent advances in inhibition strategies are necessary to develop “state‐of‐the‐art” PVSCs with high intrinsic stability for accelerated commercialization. This review systematically elaborates on the generation and fundamental mechanisms of ion migration in PVSCs, the impact of ion migration on hysteresis, phase segregation, and operational stability, and the characterizations for ion migration in PVSCs. Then, many related works on the strategies for inhibiting ion migration toward highly efficient and stable PVSCs are summarized. Finally, the perspectives on the current obstacles and prospective strategies for inhibition of ion migration in PVSCs to boost operational stability and meet all of the requirements for commercialization success are summarized.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献