Exceptional Microscale Plasticity in Amorphous Aluminum Oxide at Room Temperature

Author:

Frankberg Erkka J.12ORCID,Lambai Aloshious1ORCID,Zhang Jiahui13,Kalikka Janne4ORCID,Khakalo Sergei56ORCID,Paladino Boris2,Cabrioli Mattia2ORCID,Mathews Nidhin G.1ORCID,Salminen Turkka7ORCID,Hokka Mikko1ORCID,Akola Jaakko48ORCID,Kuronen Antti3ORCID,Levänen Erkki1ORCID,Di Fonzo Fabio29ORCID,Mohanty Gaurav1ORCID

Affiliation:

1. Materials Science and Environmental Engineering Unit Tampere University Korkeakoulunkatu 6 Tampere 33720 Finland

2. Center for Nano Science and Technology CNST@Polimi Istituto Italiano di Tecnologia Via Pascoli 70/3 Milano 20133 Italy

3. Department of Physics University of Helsinki P.O. Box 43 Helsinki FI‐00014 Finland

4. Computational Physics Laboratory Tampere University Korkeakoulunkatu 6 Tampere 33720 Finland

5. Integrated Computational Materials Engineering VTT Technical Research Centre of Finland Ltd. Vuorimiehentie 2 Espoo 02044 Finland

6. Department of Civil Engineering Aalto University Rakentajanaukio 4 Espoo 02150 Finland

7. Tampere Microscopy Center Tampere University Korkeakoulunkatu 6 Tampere 33720 Finland

8. Department of Physics Norwegian University of Science and Technology (NTNU) Høgskoleringen 5 Trondheim NO‐7491 Norway

9. X‐nano s.r.l Via Rubattino 8 Milano 20134 Italy

Abstract

AbstractOxide glasses are an elementary group of materials in modern society, but brittleness limits their wider usability at room temperature. As an exception to the rule, amorphous aluminum oxide (a‐Al2O3) is a rare diatomic glassy material exhibiting significant nanoscale plasticity at room temperature. Here, it is shown experimentally that the room temperature plasticity of a‐Al2O3 extends to the microscale and high strain rates using in situ micropillar compression. All tested a‐Al2O3 micropillars deform without fracture at up to 50% strain via a combined mechanism of viscous creep and shear band slip propagation. Large‐scale molecular dynamics simulations align with the main experimental observations and verify the plasticity mechanism at the atomic scale. The experimental strain rates reach magnitudes typical for impact loading scenarios, such as hammer forging, with strain rates up to the order of 1 000 s−1, and the total a‐Al2O3 sample volume exhibiting significant low‐temperature plasticity without fracture is expanded by 5 orders of magnitude from previous observations. The discovery is consistent with the theoretical prediction that the plasticity observed in a‐Al2O3 can extend to macroscopic bulk scale and suggests that amorphous oxides show significant potential to be used as light, high‐strength, and damage‐tolerant engineering materials.

Funder

Academy of Finland

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3