Ultra‐Low Current 10 nm Spin Hall Nano‐Oscillators

Author:

Behera Nilamani1ORCID,Chaurasiya Avinash Kumar1ORCID,González Victor H.1,Litvinenko Artem1,Bainsla Lakhan12,Kumar Akash134,Khymyn Roman1,Awad Ahmad A.134,Fulara Himanshu5,Åkerman Johan134

Affiliation:

1. Physics Department University of Gothenburg Gothenburg 412 96 Sweden

2. Department of Physics Indian Institute of Technology Ropar Roopnagar 140001 India

3. Research Institute of Electrical Communication Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai 980‐8577 Japan

4. Center for Science and Innovation in Spintronics Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai 980‐8577 Japan

5. Department of Physics Indian Institute of Technology Roorkee Roorkee 247667 India

Abstract

AbstractNano‐constriction based spin Hall nano‐oscillators (SHNOs) are at the forefront of spintronics research for emerging technological applications, such as oscillator‐based neuromorphic computing and Ising Machines. However, their miniaturization to the sub‐50 nm width regime results in poor scaling of the threshold current. Here, it shows that current shunting through the Si substrate is the origin of this problem and studies how different seed layers can mitigate it. It finds that an ultra‐thin Al2O3 seed layer and SiN (200 nm) coated p‐Si substrates provide the best improvement, enabling us to scale down the SHNO width to a truly nanoscopic dimension of 10 nm, operating at threshold currents below 30 A. In addition, the combination of electrical insulation and high thermal conductivity of the Al2O3 seed will offer the best conditions for large SHNO arrays, avoiding any significant temperature gradients within the array. The state‐of‐the‐art ultra‐low operational current SHNOs hence pave an energy‐efficient route to scale oscillator‐based computing to large dynamical neural networks of linear chains or 2D arrays.

Funder

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3