Planar Deposition via In Situ Conversion Engineering for Dendrite‐Free Zinc Batteries

Author:

Zhang Hanning1ORCID,You Yurong1,Sha Dawei2,Shui Tao1,Moloto Nosipho3,Liu Jiacheng4,Kure‐Chu Song‐Zhu4,Hihara Takehiko4,Zhang Wei1ORCID,Sun ZhengMing1ORCID

Affiliation:

1. School of Materials Science and Engineering Southeast University Nanjing 211189 China

2. School of Materials Science and Engineering Yangzhou University Yangzhou 225009 China

3. Molecular Science Institute School of Chemistry University of the Witwatersrand Private Bag 3 Wits 2050 South Africa

4. Department of Materials Function and Design Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 4668555 Japan

Abstract

AbstractOwing to the considerable capacity, high safety, and abundant zinc resources, zinc‐ion batteries (ZIBs) have been garnering much attention. Nonetheless, the unsatisfactory cyclic lifespan and poor reversibility originate from side reactions and dendrite obstacles to their practical applications. In addition to inhibiting the corrosion of aqueous electrolytes, regulating planar deposition is a key strategy to enhance their long‐term stability. Herein, an in situ conversion strategy is reported to construct a protective “dual‐layer” structure (VZSe/V@Zn) on zinc metal, consisting of the VSe2‐ZnSe outer layer with low lattice mismatch to Zn (002) plane, and corrosion‐resistant nanometallic V inner layer. Such design integrates superior interfacial ionic/electronic transfer, corrosion resistance, and unique planar deposition regulation capability. The as‐prepared VZSe/V@Zn demonstrates remarkable durability of 238 h at 50 mA cm−2 with a high depth of discharge (68.3% DOD) in the Zn||Zn symmetric cell. Even in the anode‐free system, the as‐prepared protective layer can extend the cycle life up to 2000 cycles, with an outstanding capacity retention of 93.1% and ultra‐high average coulombic efficiency of 99.998%. This work delineates an effective strategy for fabricating lattice‐matching protective layers, with profound implications for elucidating zinc deposition mechanisms and paving the way for the development of high‐performance zinc batteries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Aeronautical Science Foundation of China

Fundamental Research Funds for Central Universities of the Central South University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3