Centrifuge‐Free Separation of Solution‐Exfoliated 2D Nanosheets via Cross‐Flow Filtration

Author:

Downing Julia R.1,Diaz‐Arauzo Santiago1,Chaney Lindsay E.1,Tsai Daphne1,Hui Janan2,Seo Jung‐Woo T.1,Cohen Deborah R.3,Dango Michael3,Zhang Jinrui4,Williams Nicholas X.1,Qian Justin H.1,Dunn Jennifer B.4,Hersam Mark C.12ORCID

Affiliation:

1. Department of Materials Science and Engineering Northwestern University 2220 Campus Dr. Evanston IL 60208 USA

2. Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA

3. Cytiva 100 Results Way Marlborough MA 01752 USA

4. Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA

Abstract

AbstractSolution‐processed graphene is a promising material for numerous high‐volume applications including structural composites, batteries, sensors, and printed electronics. However, the polydisperse nature of graphene dispersions following liquid‐phase exfoliation poses major manufacturing challenges, as incompletely exfoliated graphite flakes must be removed to achieve optimal properties and downstream performance. Incumbent separation schemes rely on centrifugation, which is highly energy‐intensive and limits scalable manufacturing. Here, cross‐flow filtration (CFF) is introduced as a centrifuge‐free processing method that improves the throughput of graphene separation by two orders of magnitude. By tuning membrane pore sizes between microfiltration and ultrafiltration length scales, CFF can also be used for efficient recovery of solvents and stabilizing polymers. In this manner, life cycle assessment and techno‐economic analysis reveal that CFF reduces greenhouse gas emissions, fossil energy usage, water consumption, and specific production costs of graphene manufacturing by 57%, 56%, 63%, and 72%, respectively. To confirm that CFF produces electronic‐grade graphene, CFF‐processed graphene nanosheets are formulated into printable inks, leading to state‐of‐the‐art thin‐film conductivities exceeding 104 S m−1. This CFF methodology can likely be generalized to other van der Waals layered solids, thus enabling sustainable manufacturing of the diverse set of applications currently being pursued for 2D materials.

Funder

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3