Bayesian Optimization of Environmentally Sustainable Graphene Inks Produced by Wet Jet Milling

Author:

Chaney Lindsay E.1,van Beek Anton23,Downing Julia R.1,Zhang Jinrui4,Zhang Hengrui3,Hui Janan15,Sorensen E. Alexander1,Khalaj Maryam1,Dunn Jennifer B.34,Chen Wei13,Hersam Mark C.156ORCID

Affiliation:

1. Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA

2. School of Mechanical and Materials Engineering University College Dublin Dublin D04 V1W8 Ireland

3. Department of Mechanical Engineering Northwestern University Evanston IL 60208 USA

4. Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA

5. Department of Chemistry Northwestern University Evanston IL 60208 USA

6. Department of Medicine Department of Electrical and Computer Engineering Northwestern University Evanston IL 60208 USA

Abstract

AbstractLiquid phase exfoliation (LPE) of graphene is a potentially scalable method to produce conductive graphene inks for printed electronic applications. Among LPE methods, wet jet milling (WJM) is an emerging approach that uses high‐speed, turbulent flow to exfoliate graphene nanoplatelets from graphite in a continuous flow manner. Unlike prior WJM work based on toxic, high‐boiling‐point solvents such as n‐methyl‐2‐pyrollidone (NMP), this study uses the environmentally friendly solvent ethanol and the polymer stabilizer ethyl cellulose (EC). Bayesian optimization and iterative batch sampling are employed to guide the exploration of the experimental phase space (namely, concentrations of graphite and EC in ethanol) in order to identify the Pareto frontier that simultaneously optimizes three performance criteria (graphene yield, conversion rate, and film conductivity). This data‐driven strategy identifies vastly different optimal WJM conditions compared to literature precedent, including an optimal loading of 15 wt% graphite in ethanol compared to 1 wt% graphite in NMP. These WJM conditions provide superlative graphene production rates of 3.2 g hr−1 with the resulting graphene nanoplatelets being suitable for screen‐printed micro‐supercapacitors. Finally, life cycle assessment reveals that ethanol‐based WJM graphene exfoliation presents distinct environmental sustainability advantages for greenhouse gas emissions, fossil fuel consumption, and toxicity.

Funder

National Institute of Standards and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3