Ultralow‐Frequency Tip‐Enhanced Raman Scattering Discovers Nanoscale Radial Breathing Mode on Strained 2D Semiconductors

Author:

Cao Mao‐Feng1,Peng Xiao‐Hui1,Zhao Xiao‐Jiao1,Bao Yi‐Fan1,Xiao Yuan‐Hui1,Wu Si‐Si1,Wang Jun1,Lu Yao1,Wang Miao1,Wang Xiang12ORCID,Lin Kai‐Qiang12ORCID,Ren Bin12ORCID

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

2. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province Xiamen 361102 China

Abstract

AbstractCollective excitations including plasmons, magnons, and layer‐breathing vibration modes emerge at an ultralow frequency (<1 THz) and are crucial for understanding van der Waals materials. Strain at the nanoscale can drastically change the property of van der Waals materials and create localized states like quantum emitters. However, it remains unclear how nanoscale strain changes collective excitations. Herein, ultralow‐frequency tip‐enhanced Raman spectroscopy (TERS) with sub‐10 nm resolution under ambient conditions is developed to explore the localized collective excitation on monolayer semiconductors with nanoscale strains. A new vibrational mode is discovered at around 12 cm−1 (0.36 THz) on monolayer MoSe2 nanobubbles and it is identified as the radial breathing mode (RBM) of the curved monolayer. The correlation is determined between the RBM frequency and the strain by simultaneously performing deterministic nanoindentation and TERS measurement on monolayer MoSe2. The generality of the RBM in nanoscale curved monolayer WSe2 and bilayer MoSe2 is demonstrated. Using the RBM frequency, the strain of the monolayer MoSe2 on the nanoscale can be mapped. Such an ultralow‐frequency vibration from curved van der Waals materials provides a new approach to study nanoscale strains and points to more localized collective excitations to be discovered at the nanoscale.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Chinesisch-Deutsche Zentrum für Wissenschaftsförderung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3