Soft, Tough, Antifatigue Fracture Elastomer Composites with Low Thermal Resistance through Synergistic Crack Pinning and Interfacial Slippage

Author:

Wu Weijian12,Fan Jianfeng13,Zeng Chen1,Cheng Xiaxia1,Liu Xiaowei1,Guo Shifeng45,Sun Rong1,Ren Linlin1,Hao Zhifeng2,Zeng Xiaoliang1ORCID

Affiliation:

1. State Key Laboratory of Materials for Integrated Circuits Shenzhen Institute of Advanced Electronic Materials Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

2. Guangdong Provincial Key Laboratory of Plant Resources Biorefinery School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China

3. Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing Key Laboratory of Polymer Processing Engineering Ministry of Education South China University of Technology Guangzhou 510640 China

4. Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

5. Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

Abstract

AbstractSoft elastomer composites are promising functional materials for engineer interfaces, where the miniaturized electronic devices have triggered increasing demand for effective heat dissipation, high fracture energy, and antifatigue fracture. However, such a combination of these properties can be rarely met in the same elastomer composites simultaneously. Here a strategy is presented to fabricate a soft, extreme fracture tough (3316 J m−2) and antifatigue fracture (1052.56 J m⁻2) polydimethylsiloxane/aluminum elastomer composite. These outstanding properties are achieved by optimizing the dangling chains and spherical aluminum fillers, resulting in the combined effects of crack pinning and interfacial slippage. The dangling chains that lengthen the polymer chains between cross‐linked points pin the cracks and the rigid fillers obstruct the cracks, enhancing the energy per unit area needed for fatigue failure. The dangling chains also promote polymer/filler interfacial slippage, enabling effective deflection and blunting of an advancing crack tip, thus enhancing mechanical energy dissipation. Moreover, the elastomer composite exhibits low thermal resistance (≈0.12 K cm2 W−1), due to the formation of a thermally conductive network. These remarkable characteristics render this elastomer composite promising for application as a thermal interface material in electronic devices.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3