Approaching Theoretical Limits in the Performance of Printed P‐Type CuI Transistors via Room Temperature Vacancy Engineering

Author:

Kwon Yonghyun Albert1ORCID,Kim Jin Hyeon2,Barma Sunil V.2,Lee Keun Hyung3,Jo Sae Byeok24,Cho Jeong Ho1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering Yonsei University Seoul 03722 Republic of Korea

2. School of Chemical Engineering Sungkyunkwan University Suwon 16419 Republic of Korea

3. Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials Inha University Incheon 22212 Republic of Korea

4. SKKU Institute of Energy Science and Technology (SIEST) Sungkyunkwan University Suwon 16419 Republic of Korea

Abstract

AbstractDevelopment of a novel high performing inorganic p‐type thin film transistor could pave the way for new transparent electronic devices. This complements the widely commercialized n‐type counterparts, indium‐gallium‐zinc‐oxide (IGZO). Of the few potential candidates, copper monoiodide (CuI) stands out. It boasts visible light transparency and high intrinsic hole mobility (>40 cm2 V−1 s−1), and is suitable for various low‐temperature processes. However, the performance of reported CuI transistors is still below expected mobility, mainly due to the uncontrolled excess charge‐ and defect‐scattering from thermodynamically favored formation of copper and iodine vacancies. Here, a solution‐processed CuI transistor with a significantly improved mobility is reported. This enhancement is achieved through a room‐temperature vacancy‐engineering processing strategy on high‐k dielectrics, sodium‐embedded alumina. A thorough set of chemical, structural, optical, and electrical analyses elucidates the processing‐dependent vacancy‐modulation and its corresponding transport mechanism in CuI. This encompasses defect‐ and phonon‐scattering, as well as the delocalization of charges in crystalline domains. As a result, the optimized CuI thin film transistors exhibit exceptionally high hole mobility of 21.6 ± 4.5 cm2 V−1 s−1. Further, the successful operation of IGZO‐CuI complementary logic gates confirms the applicability of the device.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3