Multiscale Interpenetrated/Interconnected Network Design Confers All‐Carbon Aerogels with Unprecedented Thermomechanical Properties for Thermal Insulation under Extreme Environments

Author:

Chang Xinyi1,Wu Fan1,Cheng Xiaota1,Zhang Hao2,He Lijuan2,Li Wenjing2,Yin Xia1,Yu Jianyong1,Liu Yi‐Tao1,Ding Bin1ORCID

Affiliation:

1. Innovation Center for Textile Science and Technology College of Textiles Donghua University Shanghai 201620 China

2. Aerospace Institute of Advanced Material & Processing Technology Beijing 100074 China

Abstract

AbstractWith ultralight weight, low thermal conductivity, and extraordinary high‐temperature resistance, carbon aerogels hold tremendous potential against severe thermal threats encountered by hypersonic vehicles during the in‐orbit operation and re‐entry process. However, current 3D aerogels are plagued by irreconcilable contradictions between adiabatic and mechanical performance due to monotonicity of the building blocks or uncontrollable assembly behavior. Herein, a spatially confined assembly strategy of multiscale low‐dimensional nanocarbons is reported to decouple the stress and heat transfer. The nanofiber framework, a basis for transferring the loading strain, is covered by a continuous thin‐film‐like layer formed by the aggregation of nanoparticles, which in combination serve as the fundamental structural units for generating an elastic behavior while yielding compartments in aerogels to suppress the gaseous fluid thermal diffusion within distinct partitions. The resulting all‐carbon aerogels with a hierarchical cellular structure and quasi‐closed cell walls achieve the best thermomechanical and insulation trade‐off, exhibiting flyweight density (24 mg cm−3), temperature‐constant compressibility (−196–1600 °C), and a low thermal conductivity of 0.04 829 W m−1 K−1 at 300 °C. This strategy provides a remarkable thermal protection material in hostile environments for future aerospace exploration.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3