Emulsion‐Based Multiscale Structural Design Realizes Lightweight and Superelastic Graphene Aerogels for Electromagnetic Interference Shielding

Author:

Zhang Yiman1,Min Peng12ORCID,Yue Guoyao1,Niu Bochao2,Li Lulu13,Yu Zhong‐Zhen12ORCID,Zhang Hao‐Bin12ORCID

Affiliation:

1. State Key Laboratory of Organic‐Inorganic Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China

2. Beijing Key Laboratory of Advanced Functional Polymer Composites Beijing University of Chemical Technology Beijing 100029 China

3. Xi´an Modern Chemistry Research Institute Xi´an 710065 China

Abstract

AbstractUltralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion‐based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron‐level close‐pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA‐derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion‐based graphene aerogel with an ultralow density of ≈3.0 mg cm−3 integrates outstanding electrical conductivity, air‐caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel‐like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3