Imitating Architectural Mortise‐Tenon Structure for Stable Ni‐Rich Layered Cathodes

Author:

Tan Xinghua12,Chen Zhefeng1,Liu Tongchao3,Zhang Yongxin2,Zhang Mingjian1,Li Shunning1,Chu Weiguo2,Liu Kang4ORCID,Yang Peihua4ORCID,Pan Feng1ORCID

Affiliation:

1. School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 China

2. Nanofabrication Laboratory CAS Key Laboratory for Nanophotonic Materials and Devices National Center for Nanoscience and Technology Beijing 100190 China

3. Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA

4. The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients Wuhan University Wuhan 430072 China

Abstract

AbstractNi‐rich layered oxides are the most promising cathodes for Li‐ion batteries, but chemo‐mechanical failures during cycling and large first‐cycle capacity loss hinder their applications in high‐energy batteries. Herein, by introducing spinel‐like mortise‐tenon structures into the layered phase of LiNi0.8Co0.1Mn0.1O2 (NCM811), the adverse volume variations in cathode materials can be significantly suppressed. Meanwhile, these mortise‐tenon structures play the role of the expressway for fast lithium‐ion transport, which is substantiated by experiments and calculations. Moreover, the particles with mortise‐tenon structures usually terminate with the most stable (003) facet. The new cathode exhibits a discharge capacity of 215 mAh g−1 at 0.1 C with an initial Coulombic efficiency of 97.5%, and capacity retention of 82.2% after 1200 cycles at 1 C. This work offers a viable lattice engineering to address the stability and low initial Coulombic efficiency of the Ni‐rich layered oxides, and facilitates the implementation of Li‐ion batteries with high‐energy density and long durability.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Soft Science Research Project of Guangdong Province

Vehicle Technologies Office

Argonne National Laboratory

Office of Science

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3