Regulating Exciton De‐Trapping of Te4+‐Doped Zero‐Dimensional Scandium‐Halide Perovskite for Fluorescence Thermometry with Record High Time‐Resolved Thermal Sensitivity

Author:

Li Gaoqiang1,Chen Xu1,Wang Meng1,Cheng Shanshan1,Yang Dongwen1,Wu Di1,Han Yanbing1,Jia Mochen1,Li Xinjian1,Zhang Yu2,Shan Chongxin1,Shi Zhifeng1ORCID

Affiliation:

1. Key Laboratory of Materials Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou University Daxue Road 75 Zhengzhou 450052 China

2. State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Qianjin Street 2699 Changchun 130012 China

Abstract

AbstractFluorescence thermometry has been propelled to the forefront of scientific attention due to its high spatial resolution and remote non‐invasive detection. However, recent generations of thermometers still suffer from limited thermal sensitivity (Sr) below 10% change per Kelvin. Herein, this work presents an ideal temperature‐responsive fluorescence material through Te4+‐doped 0D Cs2ScCl5·H2O, in which isolated polyhedrons endow highly localized electronic structures, and the strong electron–phonon coupling facilitates the formation of self‐trapped excitons (STEs). With rising temperature, the dramatic asymmetric expansion of the soft lattice induces increased defects, strong exciton–phonon coupling, and low thermal activation energy, which evokes a rapid de‐trapping process of STEs, enabling several orders of magnitude changes in the fluorescence lifetime over a narrow temperature range. After regulating the de‐trapping process with different Te4+ doping, a record‐high Sr (27.36% K−1) of fluorescence lifetime‐based detection is achieved at 325 K. The robust stability against multiple heating/cooling cycles and long‐term measurements enables a low temperature uncertainty of 0.067 K. Further, the developed thermometers are demonstrated for the remote local monitoring of operating temperature on internal electronic components. It is believed that this work constitutes a solid step towards building the next generation of ultrasensitive thermometers based on low‐dimensional metal halides.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3