Chelated Ion‐Exchange Strategy toward BiOCl Mesoporous Single‐Crystalline Nanosheets for Boosting Photocatalytic Selective Aromatic Alcohols Oxidation

Author:

Li Wei1,Mao Yumeng1,Liu Zhilin1,Zhang Jinshui2,Luo Jiahuan3,Zhang Ling4,Qiao Zhen‐An1ORCID

Affiliation:

1. Jilin University State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Qianjin Street 2699 Changchun 130012 P. R. China

2. Fuzhou University State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry No. 2 Xue Yuan Road, University Town Fuzhou 350108 P. R. China

3. Anyang Institute of Technology School of Chemical and Environmental Engineering West section of Yellow River Avenue Anyang 455000 P. R. China

4. Jilin University State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Qianjin Street 2699 Changchun 130012 P. R. China

Abstract

AbstractThe photoresponse and photocatalytic efficiency of bismuth oxychloride (BiOCl) are greatly limited by rapid recombination of photogenerated carriers. The construction of porous single‐crystal BiOCl photocatalyst can effectively alleviate this issue and provide accessible active sites. Herein, a facile chelated ion‐exchange strategy is developed to synthesize BiOCl mesoporous single‐crystalline nanosheets (BiOCl MSCN) using acetic acid and ammonia solution respectively as chelating agent and ionization promoter. The strong chelation between acetate ions and Bi3+ ions introduces acetate ions into the precipitated product to exchange with Cl ions, resulting in large lattice mismatch, strain release, and formation of void‐like mesopores. The prepared BiOCl MSCN photocatalyst exhibits excellent catalytic performance with 99% conversion and 98% selectivity for oxidation of benzyl alcohol to benzaldehyde and superior general adaptability for various aromatic alcohols. The theoretical calculations and characterizations confirm that the superior performance is mainly attributed to the abundant oxygen vacancies, plenty of accessible adsorption/active sites and fast charge transport path without grain boundaries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3