Ultrafast Negative Capacitance Transition for 2D Ferroelectric MoS2/Graphene Transistor

Author:

Daw Debottam12ORCID,Bouzid Houcine1ORCID,Jung Moonyoung2,Suh Dongseok2,Biswas Chandan1,Hee Lee Young123ORCID

Affiliation:

1. Center for Integrated Nanostructure Physics, Institute for Basic Science Sungkyunkwan University Suwon 16419 Republic of Korea

2. Department of Energy Science Sungkyunkwan University Suwon 16419 Republic of Korea

3. Department of Physics Sungkyunkwan University Suwon 16419 Republic of Korea

Abstract

AbstractNegative capacitance gives rise to subthreshold swing (SS) below the fundamental limit by efficient modulation of surface potential in transistors. While negative‐capacitance transition is reported in polycrystalline Pb(Zr0.2Ti0.8)O3 (PZT) and HfZrO2 (HZO) thin‐films in few microseconds timescale, low SS is not persistent over a wide range of drain current when used instead of conventional dielectrics. In this work, the clear nano‐second negative transition states in 2D single‐crystal CuInP2S6 (CIPS) flakes have been demonstrated by an alternative fast‐transient measurement technique. Further, integrating this ultrafast NC transition with the localized density of states of Dirac contacts and controlled charge transfer in the CIPS/channel (MoS2/graphene) a state‐of‐the‐art device architecture, negative capacitance Dirac source drain field effect transistor (FET) is introduced. This yields an ultralow SS of 4.8 mV dec−1 with an average sub‐10 SS across five decades with on‐off ratio exceeding 107, by simultaneous improvement of transport and body factors in monolayer MoS2‐based FET, outperforming all previous reports. This approach could pave the way to achieve ultralow‐SS FETs for future high‐speed and low‐power electronics.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3