Fast Na+ Kinetics and Suppressed Voltage Hysteresis Enabled by a High‐Entropy Strategy for Sodium Oxide Cathodes

Author:

Wang Xian‐Zuo1,Zuo Yuting12,Qin Yuanbin3,Zhu Xu1,Xu Shao‐Wen1,Guo Yu‐Jie45,Yan Tianran6,Zhang Liang6,Gao Zhibin2,Yu Lianzheng17,Liu Mengting1,Yin Ya‐Xia45,Cheng Yonghong1,Wang Peng‐Fei17ORCID,Guo Yu‐Guo45ORCID

Affiliation:

1. Center of Nanomaterials for Renewable Energy State Key Laboratory of Electrical Insulation and Power Equipment School of Electrical Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 P. R. China

2. State Key Laboratory for Mechanical Behavior of Materials School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 P. R. China

3. Center for Advancing Materials Performance from the Nanoscale (CAMP‐Nano) State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an Shaanxi 710049 P. R. China

4. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China

5. School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China

6. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University Suzhou Jiangsu 215123 P. R. China

7. Jiangsu Jufeng New Energy Technology Co. Ltd. Changzhou Jiangsu 213166 P. R. China

Abstract

AbstractO3‐type layered transition metal cathodes are promising energy storage materials due to their sufficient sodium reservoir. However, sluggish sodium ions kinetics and large voltage hysteresis, which are generally associated with Na+ diffusion properties and electrochemical phase transition reversibility, drastically minimize energy density, reduce energy efficiency, and hinder further commercialization of sodium‐ion batteries (SIBs). Here, this work proposes a high‐entropy tailoring strategy through manipulating the electronic local environment within transition metal slabs to circumvent these issues. Experimental analysis combined with theoretical calculations verify that high‐entropy metal ion mixing contributes to the improved reversibility of redox reaction and O3–P3–O3 phase transition behaviors as well as the enhanced Na+ diffusivity. Consequently, the designed O3‐Na0.9Ni0.2Fe0.2Co0.2Mn0.2Ti0.15Cu0.05O2 material with high‐entropy characteristic could display a negligible voltage hysteresis (<0.09 V), impressive rate capability (98.6 mAh g−1 at 10 C) and long‐term cycling stability (79.4% capacity retention over 2000 cycles at 5 C). This work provides insightful guidance in mitigating the voltage hysteresis and facilitating Na+ diffusion of layered oxide cathode materials to realize high‐rate and high‐energy SIBs.

Funder

National Natural Science Foundation of China

State Key Laboratory of Electrical Insulation and Power Equipment

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3