Practical Cathodes for Sodium‐Ion Batteries: Who Will Take The Crown?

Author:

Liang Xinghui1,Hwang Jang‐Yeon12,Sun Yang‐Kook12ORCID

Affiliation:

1. Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea

2. Department of Battery Engineering Hanyang University Seoul 04763 Republic of Korea

Abstract

AbstractIn recent decades, sodium‐ion batteries (SIBs) have received increasing attention because they offer cost and safety advantages and avoid the challenges related to limited lithium/cobalt/nickel resources and environmental pollution. Because the sodium storage performance and production cost of SIBs are dominated by the cathode performance, developing cathode materials with large‐scale production capacity is the key to achieving commercial applications of SIBs. Therefore, developing host materials with high energy density, long cycling life, low production cost, and high chemical/environmental stability is crucial for implementing advanced SIBs. Among the developed cathode materials for SIBs, O3‐type sodiated transition‐metal oxides have attracted extensive attention owing to their simple synthesis methods, high theoretical specific capacity, and sufficient Na content. However, the relatively large Na‐ion radius leads to sluggish diffusion kinetics and inevitable complex phase transitions during the deintercalation/intercalation process, resulting in poor rate capability and cycling stability. Therefore, this review comprehensively summarizes the research progress and modification strategies for O3‐type cathodes, including the component design, surface modification, and optimization of synthesis methods. This work aims to guide the development of commercial layered oxides and provide technical support for the next generation of energy‐storage systems.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3