Design Principles of Quinone Redox Systems for Advanced Sulfide Solid‐State Organic Lithium Metal Batteries

Author:

Lin Xiaodong1ORCID,Apostol Petru1ORCID,Xu Hewei1,Bakuru Vasudeva Rao1,Guo Xiaolong1,Chen Zehan1,Rambabu Darsi1,Pal Shubhadeep1,Tie Da1,Zhang Yan1,Xie Xinlong2,Kim Seung‐Gi1,Li Yi1,Li Zhao12,Du Mengyuan1,Yan Shanshan1,Zhang Xiaozhe1,Yuan Ruming3,Zheng Mingsen3,Gauthy Fernand4,Finsy Vincent4,Zou Jianxin2,Gohy Jean‐François1,Dong Quanfeng3ORCID,Vlad Alexandru1ORCID

Affiliation:

1. Institute of Condensed Matter and Nanosciences Université Catholique de Louvain Louvain‐la‐Neuve B‐1348 Belgium

2. National Engineering Research Center of Light Alloy Net Forming State Key Laboratory of Metal Matrix Composite Center of Hydrogen Science School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China

3. State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

4. Syensqo SA Battery Materials Platform Solid State Battery Applicability Laboratory Rue de la Fusée, 98 Brussels 1130 Belgium

Abstract

AbstractThe emergence of solid‐state battery technology presents a potential solution to the dissolution challenges of high‐capacity small molecule quinone redox systems. Nonetheless, the successful integration of argyrodite‐type Li6PS5Cl, the most promising solid‐state electrolyte system, and quinone redox systems remains elusive due to their inherent reactivity. Here, a library of quinone derivatives is selected as model electrode materials to ascertain the critical descriptors governing the (electro)chemical compatibility and subsequently the performances of Li6PS5Cl‐based solid‐state organic lithium metal batteries (LMBs). Compatibility is attained if the lowest unoccupied molecular orbital level of the quinone derivative is sufficiently higher than the highest occupied molecular orbital level of Li6PS5Cl. The energy difference is demonstrated to be critical in ensuring chemical compatibility during composite electrode preparation and enable high‐efficiency operation of solid‐state organic LMBs. Considering these findings, a general principle is proposed for the selection of quinone derivatives to be integrated with Li6PS5Cl, and two solid‐state organic LMBs, based on 2,5‐diamino‐1,4‐benzoquinone and 2,3,5,6‐tetraamino‐1,4‐benzoquinone, are successfully developed and tested for the first time. Validating critical factors for the design of organic battery electrode materials is expected to pave the way for advancing the development of high‐efficiency and long cycle life solid‐state organic batteries based on sulfides electrolytes.

Funder

European Research Council

China Scholarship Council

National Key Research and Development Program of China

National Natural Science Foundation of China

H2020 European Research Council

Innoviris

Fonds De La Recherche Scientifique - FNRS

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3