Revealing the reversible solid-state electrochemistry of lithium-containing conjugated oximates for organic batteries

Author:

Wang Jiande1ORCID,Apostol Petru1,Rambabu Darsi1ORCID,Guo Xiaolong1,Liu Xuelian1,Robeyns Koen1ORCID,Du Mengyuan1,Zhang Yan12,Pal Shubhadeep1,Markowski Robert1ORCID,Lucaccioni Fabio1ORCID,Lakraychi Alae Eddine1,Morari Cristian3ORCID,Gohy Jean-François1ORCID,Gupta Deepak1,Vlad Alexandru1ORCID

Affiliation:

1. Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium.

2. College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, Hunan, P. R. China.

3. Institutul Național de Cercetare-Dezvoltare pentru Tehnologii Izotopice și Moleculare Cluj-Napoca, Cluj-Napoca, România.

Abstract

In the rising advent of organic Li-ion positive electrode materials with increased energy content, chemistries with high redox potential and intrinsic oxidation stability remain a challenge. Here, we report the solid-phase reversible electrochemistry of the oximate organic redox functionality. The disclosed oximate chemistries, including cyclic, acyclic, aliphatic, and tetra-functional stereotypes, uncover the complex interplay between the molecular structure and the electroactivity. Among the exotic features, the most appealing one is the reversible electrochemical polymerization accompanying the charge storage process in solid phase, through intermolecular azodioxy bond coupling. The best-performing oximate delivers a high reversible capacity of 350 mAh g −1 at an average potential of 3.0 versus Li + /Li 0 , attaining 1 kWh kg −1 specific energy content at the material level metric. This work ascertains a strong link between electrochemistry, organic chemistry, and battery science by emphasizing on how different phases, mechanisms, and performances can be accessed using a single chemical functionality.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3