Near‐ and Long‐Range Electronic Modulation of Single Metal Sites to Boost CO2 Electrocatalytic Reduction

Author:

Hu Chenghong1,Zhang Yue1,Hu Anqian1,Wang Yajing1,Wei Xiaoming2,Shen Kui1,Chen Liyu1ORCID,Li Yingwei1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China

2. School of Physics and Optoelectronics South China University of Technology Guangzhou 510640 P. R. China

Abstract

AbstractTuning the electronic structure of the active center is effective to improve the intrinsic activity of single‐atom catalysts but the realization of precise regulation remains challenging. Herein, a strategy of “synergistically near‐ and long‐range regulation” is reported to effectively modulate the electronic structure of single‐atom sites. ZnN4 sites decorated with axial sulfur ligand in the first coordination and surrounded phosphorus atoms in the carbon matrix are successfully constructed in the hollow carbon supports (ZnN4S1/P‐HC). ZnN4S1/P‐HC exhibits excellent performance for CO2 reduction reaction (CO2RR) with a Faraday efficiency of CO close to 100%. The coupling of the CO2RR with thermodynamically favorable hydrazine oxidation reaction to replace oxygen evolution reaction in a two‐electrode electrolyzer can greatly lower the cell voltage by 0.92 V at a current density of 5 mA cm−2, theoretically saving 46% of energy consumption. Theoretical calculation reveals that the near‐range regulation with axial thiophene‐S ligand and long‐range regulation with neighboring P atoms can synergistically lead to the increase of electron localization around the Zn sites, which strengthens the adsorption of *COOH intermediate and therefore boosts the CO2RR.

Funder

National Natural Science Foundation of China

State Key Laboratory of Pulp and Paper Engineering

Natural Science Foundation of Guangdong Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3