Preventing Vanishing Gradient Problem of Hardware Neuromorphic System by Implementing Imidazole‐Based Memristive ReLU Activation Neuron

Author:

Oh Jungyeop1,Kim Sungkyu2,Lee Changhyeon3,Cha Jun‐Hwe1,Yang Sang Yoon1,Im Sung Gap3,Park Cheolmin1,Jang Byung Chul4ORCID,Choi Sung‐Yool1ORCID

Affiliation:

1. School of Electrical Engineering Graphene/2D Materials Research Center Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

2. Department of Nanotechnology and Advanced Materials Engineering Sejong University 209 Neungdong‐ro, Gwangjin‐gu Seoul 05006 Republic of Korea

3. Department of Chemical and Biomolecular Engineering Graphene/2D Materials Research Center Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

4. School of Electronics and Electrical Engineering Kyungpook National University 41566 80 Daehakro, Bukgu Daegu Republic of Korea

Abstract

AbstractWith advances in artificial intelligent services, brain‐inspired neuromorphic systems with synaptic devices are recently attracting significant interest to circumvent the von Neumann bottleneck. However, the increasing trend of deep neural network parameters causes huge power consumption and large area overhead of a nonlinear neuron electronic circuit, and it incurs a vanishing gradient problem. Here, a memristor‐based compact and energy‐efficient neuron device is presented to implement a rectifying linear unit (ReLU) activation function. To emulate the volatile and gradual switching of the ReLU function, a copolymer memristor with a hybrid structure is proposed using a copolymer/inorganic bilayer. The functional copolymer film developed by introducing imidazole functional groups enables the formation of nanocluster‐type pseudo‐conductive filaments by boosting the nucleation of Cu nanoclusters, causing gradual switching. The ReLU neuron device is successfully demonstrated by integrating the memristor with amorphous InGaZnO thin‐film transistors, and achieves 0.5 pJ of energy consumption based on sub‐10 µA operation current and high‐speed switching of 650 ns. Furthermore, device‐to‐system‐level simulation using neuron devices on the MNIST dataset demonstrates that the vanishing gradient problem is effectively resolved by five‐layer deep neural networks. The proposed neuron device will enable the implementation of high‐density and energy‐efficient hardware neuromorphic systems.

Funder

Neurosciences Research Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3