Affiliation:
1. State Key Laboratory of Electronic Thin Film and Integrated Devices School of Physics University of Electronic Science and Technology of China Chengdu 610054 China
Abstract
AbstractNeuromorphic computing has been attracting ever‐increasing attention due to superior energy efficiency, with great promise to promote the next wave of artificial general intelligence in the post‐Moore era. Current approaches are, however, broadly designed for stationary and unitary assignments, thus encountering reluctant interconnections, power consumption, and data‐intensive computing in that domain. Reconfigurable neuromorphic computing, an on‐demand paradigm inspired by the inherent programmability of brain, can maximally reallocate finite resources to perform the proliferation of reproducibly brain‐inspired functions, highlighting a disruptive framework for bridging the gap between different primitives. Although relevant research has flourished in diverse materials and devices with novel mechanisms and architectures, a precise overview remains blank and urgently desirable. Herein, the recent strides along this pursuit are systematically reviewed from material, device, and integration perspectives. At the material and device level, one comprehensively conclude the dominant mechanisms for reconfigurability, categorized into ion migration, carrier migration, phase transition, spintronics, and photonics. Integration‐level developments for reconfigurable neuromorphic computing are also exhibited. Finally, a perspective on the future challenges for reconfigurable neuromorphic computing is discussed, definitely expanding its horizon for scientific communities.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
China Postdoctoral Science Foundation
Sichuan Province Science and Technology Support Program
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献