Metal‐Like Stretchable Nanocomposite Using Locally‐Bundled Nanowires for Skin‐Mountable Devices

Author:

Jung Dongjun12,Kim Yeongjun12,Lee Hyunjin12,Jung Sonwoo12,Park Chansul12,Hyeon Taeghwan12,Kim Dae‐Hyeong123ORCID

Affiliation:

1. Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea

2. School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea

3. Department of Materials Science and Engineering Seoul National University Seoul 08826 Republic of Korea

Abstract

AbstractStretchable conductive nanocomposites have been intensively studied for wearable bioelectronics. However, development of nanocomposites that simultaneously feature metal‐like conductivity(> 100 000 S cm−1) and high stretchability (> 100%) for high‐performance skin‐mountable devices is still extremely challenging. Here a material strategy for such a nanocomposite is presented by using local bundling of silver nanowires stabilized with dual ligands (i.e., 1‐propanethiols and 1‐decanethiols). When the nanocomposite is solidified via solvent evaporation under a highly humid condition, the nanowires in the organic solution are bundled and stabilized. The resulting locally‐bundled nanowires lower contact resistance while maintain their percolation network, leading to high conductivity. Dual ligands of 1‐propanethiol and 1‐decanethiol further boost up the conductivity. As a result, a nanocomposite with both high conductivity of ≈122,120 S cm−1 and high stretchability of ≈200% is obtained. Such superb electrical and mechanical properties are critical for various applications in skin‐like electronics, and herein, a wearable thermo‐stimulation device is demonstrated.

Funder

Institute for Basic Science

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3