Inhibiting Demetalation of Fe─N─C via Mn Sites for Efficient Oxygen Reduction Reaction in Zinc‐Air Batteries

Author:

Hu Chuan1,Xing Gengyu1,Han Wentao1,Hao Yixin1,Zhang Chenchen2,Zhang Ying2,Kuo Chun‐Han3,Chen Han‐Yi3,Hu Feng1,Li Linlin1,Peng Shengjie1ORCID

Affiliation:

1. College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China

2. Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi Jiangsu 214122 China

3. Department of Materials Science and Engineering National Tsing Hua University Hsinchu 30013 Taiwan

Abstract

AbstractDemetalation caused by the electrochemical dissolution of metallic Fe atoms is a major challenge for the practical application of Fe─N─C catalysts. Herein, an efficient single metallic Mn active site is constructed to improve the strength of the Fe─N bond, inhibiting the demetalation effect of Fe─N─C. Mn acts as an electron donor inducing more delocalized electrons to reduce the oxidation state of Fe by increasing the electron density, thereby enhancing the Fe─N bond and inhibiting the electrochemical dissolution of Fe. The oxygen reduction reaction pathway for the dissociation of Fe─Mn dual sites can overcome the high energy barriers to direct O─O bond dissociation and modulate the electronic states of Fe─N4 sites. The resulting FeMn─N─C exhibits excellent ORR activity with a high half‐wave potential of 0.92 V in alkaline electrolytes. FeMn─N─C as a cathode catalyst for Zn‐air batteries has a cycle stability of 700 h at 25 °C and a long cycle stability of more than 210 h under extremely cold conditions at −40 °C. These findings contribute to the development of efficient and stable metal‐nitrogen‐carbon catalysts for various energy devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3