Construction of Co4 Atomic Clusters to Enable Fe−N4 Motifs with Highly Active and Durable Oxygen Reduction Performance

Author:

Han Ali12,Sun Wenming3,Wan Xin4,Cai Dandan5,Wang Xijun6,Li Feng7,Shui Jianglan4,Wang Dingsheng2ORCID

Affiliation:

1. Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China

2. Department of Chemistry Tsinghua University Beijing 100084 P. R. China

3. Department of Chemistry Beijing Key Laboratory for Optical Materials and Photonic Devices Capital Normal University Beijing 100048 P. R. China

4. School of Materials Science and Engineering Beihang University Beijing 100191 P. R. China

5. School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 P. R. China

6. Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA

7. Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University 220 Handan Shanghai 200433 P. R. China

Abstract

AbstractFe−N−C catalysts with single‐atom Fe−N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton‐exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe−N4 catalysts. The integration of Fe−N4 configurations with highly uniform Co4 ACs on the N‐doped carbon substrate (Co4@/Fe1@NC) is realized through a “pre‐constrained” strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as‐developed Co4@/Fe1@NC catalyst exhibits excellent ORR activity with a half‐wave potential (E1/2) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm−2 in a H2−O2 fuel cell test. First‐principles calculations further clarify the ORR catalytic mechanism on the identified Fe−N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy‐related catalysis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3