Simple and Versatile Platforms for Manipulating Light with Matter: Strong Light–Matter Coupling in Fully Solution‐Processed Optical Microcavities

Author:

Strang Andrew1,Quirós‐Cordero Victoria2,Grégoire Pascal3,Pla Sara4,Fernández‐Lázaro Fernando4,Sastre‐Santos Ángela4,Silva‐Acuña Carlos5,Stavrinou Paul N.6,Stingelin Natalie27ORCID

Affiliation:

1. Department of Physics and Centre for Plastic Electronics Imperial College London London SW7 2AZ UK

2. School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA

3. Département de Physique et Regroupement Québécois sur les Matériaux de Pointe Université de Montréal Case Postale 6128, succursale Centre‐ville Montréal H3C 3J7 Canada

4. Área de Química Orgánica Instituto de Bioingeniería Universidad Miguel Hernández Elche 03202 Spain

5. School of Physics and School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA

6. Information Engineering Building Department of Engineering Science University of Oxford 9 Parks Road Oxford OX1 3PD UK

7. School Chemical and Biochemical Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA

Abstract

AbstractPlanar microcavities with strong light–matter coupling, monolithically processed fully from solution, consisting of two polymer‐based distributed Bragg reflectors (DBRs) comprising alternating layers of a high‐refractive‐index titanium oxide hydrate/poly(vinyl alcohol) hybrid material and a low‐refractive‐index fluorinated polymer are presented. The DBRs enclose a perylene diimide derivative (b‐PDI‐1) film positioned at the antinode of the optical mode. Strong light–matter coupling is achieved in these structures at the target excitation of the b‐PDI‐1. Indeed, the energy‐dispersion relation (energy vs in‐plane wavevector or output angle) in reflectance and the group delay of transmitted light in the microcavities show a clear anti‐crossing—an energy gap between two distinct exciton‐polariton dispersion branches. The agreement between classical electrodynamic simulations of the microcavity response and the experimental data demonstrates that the entire microcavity stack can be controllably produced as designed. Promisingly, the refractive index of the inorganic/organic hybrid layers used in the microcavity DBRs can be precisely manipulated between values of 1.50 to 2.10. Hence, microcavities with a wide spectral range of optical modes might be designed and produced with straightforward coating methodologies, enabling fine‐tuning of the energy and lifetime of the microcavities‘ optical modes to harness strong light–matter coupling in a wide variety of solution processable active materials.

Funder

European Research Council

Generalitat Valenciana

National Science Foundation

H2020 European Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3