Optical Cavity Design and Functionality for Molecular Strong Coupling

Author:

Hirai Kenji1ORCID,Andell Hutchison James2,Uji‐i Hiroshi13

Affiliation:

1. Research Institute for Electronic Science (RIES) Hokkaido University N20 W10 Sapporo Hokkaido 001-0020 Japan

2. School of Chemistry and Australian Research Council Centre of Excellence in Exciton Science The University of Melbourne Masson Rd Parkville VIC 3052 Australia

3. Department of Chemistry KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium

Abstract

AbstractOptical cavity/molecule strong coupling offers attractive opportunities to modulate photochemical or photophysical processes. When atoms or molecules are placed in an optical cavity, they can coherently exchange photonic energy with optical cavity vacuum fields, entering the strong coupling interaction regime. Recent work suggests that the thermodynamic and kinetic properties of molecules can be significantly changed by strong coupling, resulting in the emergence of intriguing photochemical and photophysical phenomena. As more and more physico‐chemical systems are studied under strong coupling conditions, optical cavities have also advanced in their sophistication, responsiveness, and (multi)functionality. In this review, we highlight some of these recent developments, particularly focusing on Fabry–Perot microcavities.

Funder

Japan Society for the Promotion of Science

Australian Research Council

Centre of Excellence in Exciton Science

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3