Scalable Fabrication of Large‐Scale, 3D, and Stretchable Circuits

Author:

Guo Dengji1,Pan Taisong12ORCID,Li Fan1,Wang Wei34,Jia Xiang1,Hu Taiqi1,Wang Zhijian34,Gao Min1,Yao Guang1,Huang Zhenlong12,Peng Zujun34,Lin Yuan156ORCID

Affiliation:

1. School of Materials and Energy University of Electronic Science and Technology of China Chengdu 610054 P. R. China

2. Research Centre for Information Technology Shenzhen Institute of Information Technology Shenzhen 518172 P. R. China

3. Institute of Flexible Electronics Technology of THU Jiaxing 314000 P. R. China

4. Laboratory of Flexible Electronics Technology Tsinghua University Beijing 100084 P.R. China

5. State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P. R. China

6. Medico‐Engineering Cooperation on Applied Medicine Research Center University of Electronic Science and Technology of China Chengdu 610054 P. R. China

Abstract

AbstractStretchable electronics have demonstrated excellent potential in wearable healthcare and conformal integration. Achieving the scalable fabrication of stretchable devices with high functional density is the cornerstone to enable the practical applications of stretchable electronics. Here, a comprehensive methodology for realizing large‐scale, 3D, and stretchable circuits (3D‐LSC) is reported. The soft copper‐clad laminate (S‐CCL) based on the “cast and cure” process facilitates patterning the planar interconnects with the scale beyond 1 m. With the ability to form through, buried and blind VIAs in the multilayer stack of S‐CCLs, high functional density can be achieved by further creating vertical interconnects in stacked S‐CCLs. The application of temporary bonding substrate effectively minimizes the misalignments caused by residual strain and thermal strain. 3D‐LSC enables the batch production of stretchable skin patches based on five‐layer stretchable circuits, which can serve as a miniaturized system for physiological signals monitoring with wireless power delivery. The fabrications of conformal antenna and stretchable light‐emitting diode display further illustrate the potential of 3D‐LSC in realizing large‐scale stretchable devices.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3