Light‐Induced Metastable Hidden Skyrmion Phase in the Mott Insulator Cu2OSeO3

Author:

Truc Benoit1ORCID,Sapozhnik Alexey A.1ORCID,Tengdin Phoebe1ORCID,Viñas Boström Emil2ORCID,Schönenberger Thomas3ORCID,Gargiulo Simone1ORCID,Madan Ivan1ORCID,LaGrange Thomas1ORCID,Magrez Arnaud4ORCID,Verdozzi Claudio5ORCID,Rubio Angel26ORCID,Rønnow Henrik M.3ORCID,Carbone Fabrizio1ORCID

Affiliation:

1. Laboratory for Ultrafast Microscopy and Electron Scattering Institute of Physics École Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland

2. Max Planck Institute for the Structure and Dynamics of Matter 22761 Hamburg Germany

3. Laboratory for Quantum Magnetism Institute of Physics École Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland

4. Crystal Growth Facility Institute of Physics École Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland

5. Division of Mathematical Physics and ETSF Lund University Lund 223 63 Sweden

6. Center for Computational Quantum Physics (CCQ) The Flatiron Institute New York 10010 USA

Abstract

AbstractThe discovery of a novel long‐lived metastable skyrmion phase in the multiferroic insulator Cu2OSeO3 visualized with Lorentz transmission electron microscopy for magnetic fields below the equilibrium skyrmion pocket is reported. This phase can be accessed by exciting the sample non‐adiabatically with near‐infrared femtosecond laser pulses and cannot be reached by any conventional field‐cooling protocol, referred as a hidden phase. From the strong wavelength dependence of the photocreation process and via spin‐dynamics simulations, the magnetoelastic effect is identified as the most likely photocreation mechanism. This effect results in a transient modification of the magnetic free energy landscape extending the equilibrium skyrmion pocket to lower magnetic fields. The evolution of the photoinduced phase is monitored for over 15 min and no decay is found. Because such a time is much longer than the duration of any transient effect induced by a laser pulse in a material, it is assumed that the newly discovered skyrmion state is stable for practical purposes, thus breaking ground for a novel approach to control magnetic state on demand at ultrafast timescales and drastically reducing heat dissipation relevant for next‐generation spintronic devices.

Funder

European Research Council

Vetenskapsrådet

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3