Nanoscale Operando Characterization of Electrolyte‐Gated Organic Field‐Effect Transistors Reveals Charge Transport Bottlenecks

Author:

Tanwar Shubham1ORCID,Millan‐Solsona Ruben12,Ruiz‐Molina Sara3,Mas‐Torrent Marta3,Kyndiah Adrica4,Gomila Gabriel12ORCID

Affiliation:

1. Nanoscale Bioelectrical Characterization Group Institut de Bioenginyeria de Catalunya (IBEC) The Barcelona Institute of Science and Technology (BIST) Carrer Baldiri i Reixac 11‐15 Barcelona 08028 Spain

2. Department d'Enginyeria Electrònica i Biomèdica Universitat de Barcelona Carrer Martí i Franquès, 1 Barcelona 08028 Spain

3. Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC) Campus UAB Cerdanyola del Vallès Barcelona 08193 Spain

4. Center for Nano Science and Technology Istituto Italiano di Tecnologia Via Rubattino 81 Milano 20134 Italy

Abstract

AbstractCharge transport in electrolyte‐gated organic field‐effect transistors (EGOFETs) is governed by the microstructural property of the semiconducting thin film that is in direct contact with the electrolyte. Therefore, a comprehensive nanoscale operando characterization of the active channel is crucial to pinpoint various charge transport bottlenecks for rational and targeted optimization of the devices. Here, the local electrical properties of EGOFETs are systematically probed by in‐liquid scanning dielectric microscopy (in‐liquid SDM) and a direct picture of their functional mechanism at the nanoscale is provided across all operational regimes, starting from subthreshold, linear to saturation, until the onset of pinch‐off. To this end, a robust interpretation framework of in‐liquid SDM is introduced that enables quantitative local electric potential mapping directly from raw experimental data without requiring calibration or numerical simulations. Based on this development, a straightforward nanoscale assessment of various charge transport bottlenecks is performed, like contact access resistances, inter‐ and intradomain charge transport, microstructural inhomogeneities, and conduction anisotropy, which have been inaccessible earlier. Present results contribute to the fundamental understanding of charge transport in electrolyte‐gated transistors and promote the development of direct structure–property–function relationships to guide future design rules.

Funder

Generalitat de Catalunya

Agencia Estatal de Investigación

HORIZON EUROPE European Innovation Council

H2020 Marie Skłodowska-Curie Actions

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3