Automated Scanning Dielectric Microscopy Toolbox for Operando Nanoscale Electrical Characterization of Electrolyte‐Gated Organic Transistors

Author:

Tanwar Shubham1ORCID,Millan‐Solsona Ruben12,Ruiz‐Molina Sara3,Mas‐Torrent Marta3,Kyndiah Adrica4ORCID,Gomila Gabriel12ORCID

Affiliation:

1. Nanoscale Bioelectrical Characterization Group Institut de Bioenginyeria de Catalunya (IBEC) The Barcelona Institute of Science and Technology (BIST) Carrer Baldiri i Reixac 11‐15 Barcelona 08028 Spain

2. Department d'Enginyeria Electrònica i Biomèdica Universitat de Barcelona Carrer Martí i Franquès, 1 Barcelona 08028 Spain

3. Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC) Campus UAB Cerdanyola del Vallès Barcelona 08193 Spain

4. Center for Nano Science and Technology Istituto Italiano di Tecnologia Via Rubattino 81 Milano 20134 Italy

Abstract

AbstractElectrolyte‐gated organic transistors (EGOTs) leveraging organic semiconductors' electronic and ionic transport characteristics are the key enablers for many biosensing and bioelectronic applications that can selectively sense, record, and monitor different biological and biochemical processes at the nanoscale and translate them into macroscopic electrical signals. Understanding such transduction mechanisms requires multiscale characterization tools to comprehensively probe local electrical properties and link them with device behavior across various bias points. Here, an automated scanning dielectric microscopy toolbox is demonstrated that performs operando in‐liquid scanning dielectric microscopy measurements on functional EGOTs and carries out extensive data analysis to unravel the evolution of local electrical properties in minute detail. This paper emphasizes critical experimental considerations permitting standardized, accurate, and reproducible data acquisition. The developed approach is validated with EGOTs based on blends of organic small molecule semiconductor and insulating polymer that work as accumulation‐mode field‐effect transistors. Furthermore, the degradation of local electrical characteristics at high gate voltages is probed, which is apparently driven by the destruction of local crystalline order due to undesirable electrochemical swelling of the organic semiconducting material near the source electrode edge. The developed approach paves the way for systematic probing of EGOT‐based technologies for targeted optimization and fundamental understanding.

Funder

Generalitat de Catalunya

Ministerio de Ciencia e Innovación

HORIZON EUROPE European Innovation Council

H2020 Marie Skłodowska-Curie Actions

Agencia Estatal de Investigación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3