Giant Nonlinear Optical Response via Coherent Stacking of In‐Plane Ferroelectric Layers

Author:

Mao Nannan12ORCID,Luo Yue34,Chiu Ming‐Hui15,Shi Chuqiao6,Ji Xiang15,Pieshkov Tymofii S.6,Lin Yuxuan7,Tang Hao‐Lin15,Akey Austin J.3,Gardener Jules A.3,Park Ji‐Hoon1,Tung Vincent5,Ling Xi8,Qian Xiaofeng9,Wilson William L.3,Han Yimo6,Tisdale William A.2,Kong Jing1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA 02139 USA

2. Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

3. Center for Nanoscale Systems Harvard University Cambridge MA 02138 USA

4. Department of Physics Harvard University Cambridge MA 02138 USA

5. Material Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Saudi Arabia

6. Department of Materials Science and NanoEngineering Rice University Houston TX 77005 USA

7. Department of Electrical Engineering and Computer Sciences University of California Berkeley CA USA

8. Department of Chemistry and Division of Materials Science and Engineering Boston University Boston MA 02215 USA

9. Department of Materials Science and Engineering Department of Electrical and Computer Engineering Texas A&M University College Station Texas 77843 USA

Abstract

AbstractThin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in‐plane ferroelectric material that exhibits a giant nonlinear optical effect, group‐IV monochalcogenide SnSe, is reported. Nanometer‐scale ferroelectric domains with ≈90°/270° twin boundaries or ≈180° domain walls are revealed in physical‐vapor‐deposited SnSe by lateral piezoresponse force microscopy. Atomic structure characterization reveals both parallel and antiparallel stacking of neighboring van der Waals ferroelectric layers, leading to ferroelectric or antiferroelectric ordering. Ferroelectric domains exhibit giant nonlinear optical activity due to coherent enhancement of second‐harmonic fields and the as‐resulted second‐harmonic generation was observed to be 100 times more intense than monolayer WS2. This work demonstrates in‐plane ferroelectric ordering and giant nonlinear optical activity in SnSe, which paves the way for applications in on‐chip nonlinear optical components and nonvolatile memory devices.

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

National Science Foundation

Army Research Office

Welch Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3