Second Harmonic Generation Control in 2D Layered Materials: Status and Outlook

Author:

Huang Wenjuan1,Xiao Yue1,Xia Fangfang2,Chen Xiangbai1,Zhai Tianyou234ORCID

Affiliation:

1. Hubei Key Laboratory of Optical Information and Pattern Recognition Wuhan Institute of Technology Wuhan 430205 China

2. State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China

3. Research Institute of Huazhong University of Science and Technology in Shenzhen Shenzhen 518057 China

4. Optics Valley Laboratory Hubei 430074 China

Abstract

AbstractSecond harmonic generation (SHG) as an essential nonlinear optical effect, has gradually shifted its research trend toward the integration and miniaturization of photonic and optoelectronic on‐chip devices in recent years. 2D layered materials (2DLMs) open up a new research paradigm of nonlinear optics due to their large second‐order susceptibility, atomically thin structure, and perfect phase‐matching. However, 2DLMs are facing a bottleneck of weak SHG conversion efficiency limit caused by short light–matter interaction lengths at a nanoscale. Moreover, advances in integrated on‐chip SHG devices based on 2DLMs rely on the continuing development of novel strategies with tunable and efficient SHG responses. Here, this review provides a comprehensive overview of recent progress in exploring highly efficient and tunable SHG responses in 2DLMs. Various modulation and enhancement strategies for the SHG response of 2DLMs are extensively studied and systematically discussed, which can be classified into two categories: symmetry breaking and light‐matter interaction enhancement. Moreover, remaining challenges and outlooks toward further extending and realizing the practical applications of 2DLMs in nonlinear on‐chip integrated devices with SHG modulation and enhancement characteristics are discussed.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3