Liquid‐Superspreading‐Boosted High‐Performance Jet‐Flow Boiling for Enhancement of Phase‐Change Cooling

Author:

Xu Zhe12,Zhang Peng3,Yu Chuanghui14,Miao Weining1,Chang Qiankun3,Qiu Ming14,Li Yulong14,Tian Ye1,Jiang Lei12ORCID

Affiliation:

1. Key Laboratory of Bio‐inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

2. School of Chemistry Beihang University Beijing 100191 P. R. China

3. Sugon DataEnergy (Beijing) Co., Ltd. Beijing 100193 P. R. China

4. University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractEnhanced boiling heat transfer via surface engineering is a topic of general interest for its great demand in industrial fields. However, as a dynamic interfacial phenomenon, a deep understanding of its process and mechanism, including liquid re‐wetting and vapor departure, is still challenging. Herein, a micro‐/nanostructured Cu surface containing a periodic microgroove/pyramid array with rich nanowrinkles is designed, where superspreading (<134.1 ms) of organic cooling agents highly boosts the liquid re‐wetting process, causing a discontinuous solid–liquid–vapor three‐phase contact line and ultralow under‐liquid bubble adhesion force (≈1.3 µN). Therefore, a characteristic, ultrafast jet‐flow boiling (bubbles rapidly ejected in multiple strips) is obtained on this surface, giving a priority to nucleation (superheat ≈ 1.5 °C) and simultaneously enhancing the critical heat flux and heat‐transfer coefficient by up to 80% and 608%, respectively, compared with a flat surface. In situ observation and analysis of the nucleation, growth, and departure of micro‐sized jet‐flow bubbles reflects that microgrooves/pyramids with nanowrinkles promote the latent heat exchange process by superspreading‐induced ultrafast liquid re‐wetting and constant vapor film coalescing. Based on the designed structures, high‐performance phase‐change cooling for central processing unit heat management in supercomputer centers is accomplished with an ultralow power usage effectiveness (PUE < 1.04).

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3